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Abstract. We present a new method for calculating directly the one-particle self-energy of an
impurity Anderson model with Wilson’s numerical renormalization group method by writing
this quantity as the ratio of two correlation functions. This way of calculating6(z) turns out
to be considerably more reliable and accurate than that via the impurity Green’s function alone.
We give results for the self-energy for the case of a constant coupling between the impurity
and the conduction band(Im1(ω + i0+) = constant) and the effective1(z) arising in the
dynamical mean-field theory of the Hubbard model. The implications of the problem of the
metal–insulator transition in the Hubbard model are also discussed.

1. Introduction

The single-impurity Anderson model [1] is one of the most fundamental and probably the
best understood model for strong electronic correlations. Since it was invented to describe
the properties of magnetic impurities in non-magnetic metallic hosts 35 years ago, a variety
of standard techniques have been applied to it and new methods have been developed to
study its static and dynamic properties over basically the whole parameter space (for a
review see e.g. [2]). Although a very clear picture of the physics of the single-impurity
Anderson model has emerged from these calculations, a reliable method for calculating
dynamic properties at very low temperatures and intermediate or large values of the Coulomb
interaction was for a long time lacking.

For example, Betheansatzcalculations [3], which are essentially exact, can only access
static properties and the quantum Monte Carlo method [4], which can be viewed as another
numerically exact technique, cannot reach very low temperatures and/or large values of the
Coulomb parameter, although it does not suffer from a minus-sign problem here. In addition,
the analytic continuation of the imaginary-time data to real frequencies is a numerically
highly ill-conditioned problem.

Among the approximate treatments, the resolvent perturbation theory together with the
so-called non-crossing approximation [5] turned out to be a simple and powerful technique
for high and intermediate temperatures of the order of the Kondo scale but completely fails
to reproduce the local Fermi-liquid properties asT → 0. Last but not least, straightforward
second-order perturbation theory inU [6] has been shown to work surprisingly well down
to T = 0 but it is restricted to the symmetric case and not too large values ofU .
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The numerical renormalization group (NRG) method, invented by Wilson for the Kondo
problem [7] and later applied by Krishna-murthyet al to the impurity Anderson model [8],
is usually acknowledged primarily in the context of universality and low-energy fixed-point
behaviour of the Kondo or Anderson model. One of its most appealing features is that it
can deal equally well with small, intermediate or large values ofU and is not restricted
to half-filling. During the last 15 years considerable progress has been made in extracting
dynamical properties with this method, too, and it has been shown to give very accurate
results also for e.g. dynamical one- and two-particle and also transport properties [9, 10].
The NRG method works best atT = 0, and various dynamical correlation functions can
be calculated with an accuracy of a few per cent. Although less well defined for finite
temperatures, its extension toT > 0 also shows very good agreement with exact results
[10]. It is quite remarkable that no sum rules (Friedel sum rule, total spectral weight) need
be used as input for these calculations. In contrast, they can serve as an independent check
on the quality of the results.

More recent interest in reliable methods for solving the impurity Anderson model and
calculating its dynamical properties has been motivated by the discovery that lattice models
in the limit of infinite dimensions acquire a purely local one-particle self-energy [11]. This
simplification eventually leads to a mapping of the lattice problem onto an effective-impurity
Anderson model coupled to a medium to be determined self-consistently [12]. Note that
in the general case the achieving of this self-consistency requires the knowledge of the
one-particle self-energy. In view of the wide range of problems to which this so-called
dynamical mean-field theory (DMFT; see e.g. [13]) can be applied, it seems surprising that
there have been hardly any contributions using the NRG method. The only NRG calculation
known to us is the work of Sakaiet al [14] where the symmetric Hubbard model in the
metallic regime was studied. In their paper, these authors point out some difficulties in the
process of iterating the NRG results with the DMFT equations, which are largely related to
the necessary broadening of the NRG spectra (see further below).

In this contribution we present a new method for calculating dynamical properties for
the impurity Anderson model, namely by directly constructing the interaction contribution
to the self-energy as the ratio of two correlation functions,6U

σ (z) = UFσ (z)/Gσ (z), with
Fσ (z) = 〈〈fσf †σ̄ fσ̄ , f †σ 〉〉z and Gσ(z) = 〈〈fσ , f †σ 〉〉z (see section 2). Details of how to
calculate theF(z) are given in the appendix. In section 3 we discuss results for

(i) the standard case, where the coupling between impurity states and the metallic host,
Im1(ω + i0+), is constant, and

(ii) the Hubbard model ford = ∞, where1(z) has to be determined self-consistently.

The Hubbard model is studied in the paramagnetic regime, at half-filling andT = 0.
We discuss the properties of the self-energy and local density of states in both the metallic
and insulating regimes and some preliminary results for the metal–insulator transition.

2. Calculation of the self-energy

2.1. The model and basic concepts

The impurity Anderson model is written in the form

H =
∑
σ

εff
†
σ fσ + Uf †↑f↑f †↓f↓ +

∑
kσ

εkc
†
kσ ckσ +

∑
kσ

Vk

(
f †σ ckσ + c†kσ fσ

)
. (1)
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In the model (1),c(†)kσ denote standard annihilation (creation) operators for band states with
spinσ and energyεk, f (†)σ those for impurity states with spinσ and energyεf . The Coulomb
interaction for two electrons at the impurity site is given byU and both subsystems are
coupled via a hybridizationVk, which we allow to bek-dependent here.

Our final goal is to calculate the one-particle Green’s functionGσ(z) = 〈〈fσ , f †σ 〉〉z,
which formally can be written as

Gσ(z) = 1

z− εf −6σ(z) . (2)

While this formal introduction of the one-particle self-energy6(z) is straightforward, the
actual calculation ofG(z) or alternatively6(z) is usually an extremely complicated problem.
In order to express the self-energy6(z) in terms of standard impurity correlation functions,
we make use of the equation of motion

z〈〈A,B〉〉z + 〈〈LA,B〉〉z = 〈[A,B]η〉 (3)

with L · ≡ [H, · ]− and η = + if both A and B are fermionic operators, whileη = −
otherwise. The correlation functions are defined as

〈〈A,B〉〉z = i
∫ ∞

0
eizt 〈[A(t), B]η〉.

For A = fσ andB = f †σ we obtain the equation of motion for the f Green’s function as

(z− εf)Gσ (z)− U〈〈fσf †σ̄ fσ̄ , f †σ 〉〉z −
∑
k

Vk〈〈ckσ , f †σ 〉〉z = 1. (4)

The correlation function〈〈ckσ , f †σ 〉〉z is related toGσ(z) via equation (3) withA = ckσ and
B = f †σ through

(z− εk)〈〈ckσ , f †σ 〉〉z − VkGσ (z) = 0. (5)

TheU -term does not enter this equation as the Coulomb interaction only acts on the impurity
states. Together with (5), equation (4) has the form

(z− εf)Gσ (z)− UFσ (z)−1(z)Gσ (z) = 1 (6)

where we have defined

Fσ (z) = 〈〈fσf †σ̄ fσ̄ , f †σ 〉〉z and 1(z) =
∑
k

V 2
k

1

z− εk .

The total self-energy6σ(z) for the single-impurity Anderson model is thus given by

6σ(z) = 1(z)+6U
σ (z) (7)

where the non-trivial part due to the Coulomb correlations6U(z) is obtained from

6U
σ (z) = U

Fσ (z)

Gσ (z)
. (8)

For simplicity and since we are only interested in the paramagnetic situation for the time
being, the spin index will be dropped in the following.

Alternatively, the interaction part of the self-energy can of course also be calculated
directly from equation (2) using

6U(z) = G0(z)
−1−G(z)−1 with G0(z) = 1

z− εf −1(z) . (9)

At first glance, there seems to be no apparent reason to prefer the more complicated equation
(8) over equation (9). In order to clarify the advantage of using equation (8) instead of
equation (9) for the calculation of6U(z) with the NRG method we want to give a brief
description of how the spectral densities forG(z) andF(z) are calculated with the NRG
method.
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2.2. Technical details

Within the NRG method, the impurity Anderson model equation (1) is mapped onto a
semi-infinite chain (see [7, 8]) which is diagonalized iteratively starting from the uncoupled
impurity. At each iteration, the number of states increases by a factor of 4 and, after a certain
number of iterations, the basis kept for the next iteration has to be truncated. The important
point of the method is that the coupling between consecutive elements of the chain decreases
exponentially for increasing distance from the origin, so with increasing chain length at each
iteration, basically only the lowest-lying states will be renormalized and such a truncation is
meaningful. The spectral functions at each iteration are calculated from the corresponding
matrix elements, which are in turn related to those of the previous iteration. This procedure
is well established for the one-particle density of statesA(ω) = −(1/π) ImG(ω + i0+)
[9, 10] and can straightforwardly be extended toB(ω) = −(1/π) ImF(ω + i0+). For
details we refer the reader to the appendix. Due to the truncation of states, the spectral
function for the whole frequency range has to be built up from the data for all of the
iterations.

The resulting spectral function is a set ofδ-functions at frequenciesωn with weightsgn
which are broadened on a logarithmic scale as

gnδ(ω − ωn) −→ gn
e−b

2
n/4

bnωn
√
π

exp

[
− (lnω − lnωn)2

b2
n

]
. (10)

This form of broadening was also used in [9] and [10] and is especially adapted to the
exponential variation in energies peculiar to the NRG method. The widthbn is chosen asb
independent ofn, and we use values in the range 0.36 b 6 0.6.

It is well known that with this scheme the NRG method already gives quite accurate
results forG(z) [9, 10]. However, one might anticipate some problems with the calculation
of 6U(z) using equation (9). The functionG0(z)

−1 is, of course, known exactly, since1(z)
is a given quantity. Building the difference between an exactly known and a numerically
determined function is usually very susceptible to numerical errors, especially in regions
where the result becomes small. Since this is expected to happen close to the Fermi level,
i.e. in the physically most relevant region, one is likely to run into problems there.

One naive attempt to reduce these kinds of inconsistency and numerical error when
building the difference in equation (9) is to treatG0(z)

−1 andG(z)−1 on the same level—
that is, to calculateG0(z)

−1 via the NRG method as well by settingU = 0. However,
since according to the theory of error propagation in sums or differences the absolute errors
add, one must expect this procedure to be also ill-conditioned. If bothG0(z) andG(z) are
known exactly, the differenceG0(z)

−1 − G(z)−1 always gives a negative imaginary part
for the self-energy as there would be a pole inG(z)−1 for every pole inG0(z)

−1 at the
same energy with equal or larger residue. This is no longer guaranteed as soon as both
G0(z) andG(z) are only known approximately, and one has to use rather large values of the
broadening parameterb to avoid unphysical oscillations in6U(z). This broadening in turn
leads to a strong suppression of the high-energy peaks because spectral weight is shifted
from the centre of the peak to its tails (to the high-energy side due to equation (10)).

For the calculation of6U(z) via equation (8) on the other hand, we do not expect to
face these kinds of problem to any great extent. Again, the two quantities are calculated
on the same basis by broadening the NRG results with (10), i.e. with the same systematic
error. This time, however, wedivide them by each other, which means that only therelative
errors will be propagated, leading to a numerically much more stable procedure.

Let us support this rather qualitative argument in favour of expressing the self-energy as
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Figure 1. The impurity spectral function forεf = −0.1,U = 0.2, T = 0 and−Im1(ω+ i0+) =
0.015 in units of the conduction electron bandwidth.Ā(ω) (solid line) is the result obtained
directly from the NRG method andA(ω) (dashed line) is calculated via the self-energy
equation (8). The inset shows the region around the Fermi level.

the ratioUF(z)/G(z) by comparing the spectral function̄A(ω) obtained directly from the
NRG method (the solid line in figure 1) and theA(ω) calculated from equation (2) with the
self-energy expressed as in equation (8) (the dashed line in figure 1). The spectral functions
are defined as

A(ω) = − 1

π
ImG(ω + i0+).

The parameters areεf = −0.1D, U = 0.2D and−Im1(ω + i0+) = 10 = 0.015D, where
2D is the conduction electron bandwidth. For convenience we useD = 1 as the energy
scale and concentrate on the particle–hole-symmetric case of the Anderson model here.
However, similar aspects also hold in the asymmetric case [15].

The differences between the two methods can be summarized as follows.

(i) We find for the total spectral weight∫
dω Ā(ω) = w̄ = 0.93 and

∫
dω A(ω) = w = 0.9993.

The 7% deviation inw̄ can in principle be reduced by improving the resolution of the NRG
calculation (smaller deviations have been achieved e.g. in [9, 10]). This is, however, not
necessary in our case, because the self-energy resulting from equation (8) is an analytic
function and the sum rulew = 1 is then automatically fulfilled (apart from the very small
numerical error).

(ii) The charge-fluctuation peaks nearεf are much more pronounced inA(ω). That the
high-energy features are usually underrated is a well-known problem in the calculation of
dynamical properties with the NRG method. This problem is at least partially resolved in
our new scheme, since the main contribution in this part of the spectrum comes instead
from the hybridization part1(z), which is treated exactly.
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(iii) The oscillations inĀ(ω) nearω = 0 are due to the fact that we use a very small
broadening here and plot the spectral function on a very dense mesh (if one only plots the
Ā(ω) at frequenciesωn ∝ 3−n, these oscillations are absent, as in [9, 10]). Nevertheless,
these oscillations almost vanish in the finalA(ω).

(iv) The impurity density at the Fermi level as deduced from the Friedel sum rule is

A(0) = − sin2(δ)

π Im1(i0+)
=:

sin2(δ)

π10
. (11)

In the particle–hole-symmetric case, the scattering phase isδ = π/2, soA(0) ≈ 21 for the
parameters used here. The results show a deviation from this value of about 7% inĀ(ω)

and 4% inA(ω).

Although the error in the Friedel sum rule is visibly reduced, the deviation is still a few
per cent. Its origin will be discussed in the following.

2.3. Numerical aspects

It is important to understand the origin of the deviation ofA(0) (the Friedel sum rule) from
its exact value, as this lies at the heart of the numerical procedure.

−0.40 −0.20 0.00 0.20 0.40 0.60
ω

−2.0

2.0

6.0

10.0

14.0

18.0

22.0

A
(ω

),B
(ω

)

A(ω)
B(ω)

−0.0004 0.0000
ω

0.0

10.0

20.0

Figure 2. The spectral functionsA(ω) (solid line) andB(ω) (dotted line) for the same parameters
as in figure 1 (directly from the NRG method, not via the self-energy). The inset shows the
region around the Fermi level.

Typical results forA(ω) andB(ω) as calculated with the NRG method are shown in
figure 2. Both spectral functionsA(ω) andB(ω) display a sharp resonance close to the Fermi
energy. However, in contrast toA(ω), which is positive definite and perfectly symmetric
aboutω = 0 due to the particle–hole symmetry, the functionB(ω) is obviously not positive
definite and appears to be extremely asymmetric.

As the next step, we must calculate the real parts, which are obtained via standard
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Kramers–Kronig transformation. The self-energy is finally given, with equation (8), as

Re6U(ω + i0+)+ i Im6U(ω + i0+) = U ReF(ω + i0+)+ i Im F(ω + i0+)
ReG(ω + i0+)+ i ImG(ω + i0+)

. (12)

In the particle–hole symmetric case, ReG(ω+ i0+) necessarily vanishes atω = 0; therefore,

Re6U(0+) = U ImF(i0+)
ImG(i0+)

(13)

which of course has to give the Hartree termU/2, and

Im6U(i0+) = −U ReF(i0+)
ImG(i0+)

. (14)

In the case of the standard single-impurity Anderson model, we furthermore know that the
Friedel sum rule Im6U(i0+) = 0 has to be fulfilled, which implies that

ReF(i0+) = −
∫ ∞
−∞

dω B(ω)P 1

ω
= 0 (15)

whereP(· · ·) denotes the principal value. Relation (15) is obviously not trivial as regards
the unusual shape ofB(ω). Indeed, it turns out that ReF(i0+) is numerically zero as long
as thefull spectrum of the Hamiltonian can be used. However, as soon as a truncation of
states sets in, the calculated value for ReF(i0+) suddenly jumps to a finite value, eventually
leading to a violation of the Friedel sum rule as observed e.g. in figure 1.

This observation suggests that high-energy states are also important to guarantee that
ReF(i0+) = 0 and also that a slight violation of the Friedel sum rule is almost unavoidable
in this method.

−0.8 −0.4 0.0 0.4 0.8 1.2 1.6
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0.10
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ReΣ(ω)

−0.0010 0.0000 0.0010
−0.010

0.000

0.010

Figure 3. Real and imaginary parts of the self-energy forεf = −0.1, U = 0.2 and a constant
10 = 0.015. The inset shows the region around the Fermi level where the Hartree term was
subtracted from the real part.
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3. Results

3.1. The single-impurity Anderson model

As a simple example, let us discuss the standard case of a constant Im1(ω + i0+):

−Im1(ω + i0+) =
{
10 |ω| < 1

0 |ω| > 1.
(16)

The application of the NRG method to this model has been discussed very extensively in
the literature [9, 10]. Thus the results presented here certainly give no new insight into the
physics of this model. They are mainly intended to give the reader a feeling for the quality
of our method.

Figure 3 shows the results for the real and imaginary part of6U(z) for εf = −0.1,
U = 0.2, 10 = 0.015 andT = 0. As a first important point we note that the real part of
the self-energy has a constant contribution. If we calculate Re6U(ω) + Re6U(−ω), we
obtain the expected valueU/2 to within numerical precision for allω. This result also shows
that, althoughB(ω) is asymmetric, the final result obeys the particle–hole symmetry to a high
precision. In addition, the slope∂ Re6U(ω)/∂ω|ω=0 is negative and large, corresponding
to a high effective mass.

The imaginary part of6U(z) shows two pronounced peaks atω ≈ ±0.03 and a
steep decrease asω → 0. In the vicinity of the Fermi level we find the Fermi-liquid
property Im6U(ω + i0+) ∝ ω2 (see the inset of figure 3). However, as pointed out in the
previous section, the Friedel sum rule Im6U(i0+) = 0 is not exactly fulfilled. The shift of
Im6U(i0+) ≈ −0.0007 corresponds to a 4% error inA(0) = 1/(π10).
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0.0

10.0

20.0

A
(ω

)

U=0.1
U=0.2
U=0.4

0.00 0.20 0.40
U

10
0

10
1

10
2

10
3

10
4

10
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Figure 4. The spectral function forεf = −U/2, 10 = 0.015 and various values ofU . The
inset shows the resulting effective massm∗ (filled circles) together with the expected behaviour
m∗ ∝ √U exp(πU/(810)) (crosses).

Figure 4, finally, shows the resulting spectral function for various values ofU . As
mentioned previously in section 2, we find pronounced charge-fluctuation peaks at±U/2
and the characteristic Abrikosov–Suhl resonance at the Fermi level. With increasing
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U , this resonance becomes sharper. The corresponding energy scale expressed via the
effective mass is shown in the inset to figure 4 together with the expected behaviour
m∗ ∝ √U exp(πU/(810)).

3.2. Application to the Hubbard model

The impurity Anderson model is not only useful to describe magnetic impurities in non-
magnetic metals. It was shown only recently that in the limit of infinite spatial dimensions
a lattice model (Hubbard model, periodic Anderson model etc) with local interactions can
be mapped onto an effective single-impurity Anderson model. The quantity1(z), which in
the single-impurity model describes the coupling to the metallic host, becomes in general
an energy-dependent quantity here, which has a meaning similar to the Weiss field in the
mean-field theory of the Heisenberg model. Since1(z) is a dynamical quantity which must
be determined self-consistently as a functional of the one-particle self-energy [12–14], the
name ‘dynamical mean-field theory’ (DMFT) has been coined.

This self-consistency makes it necessary to calculate the self-energy6U(z) as accurately
as possible. Here we want to demonstrate that the NRG method together with the method
of calculating6U(z) presented in the previous section is indeed a reliable and accurate
method to do this job atT = 0.

−4.0 −2.0 0.0 2.0 4.0
ω

0.0

0.2

0.4

0.6

0.8

A
(ω

)

U=1.0
U=2.0
U=2.85
U=2.93
U=4.0

Figure 5. The local spectral function of the Hubbard model for various values ofU . A
quasiparticle peak develops for increasing values ofU which vanishes at a critical value
Uc ≈ 2.93, signalling the metal–insulator transition.

The first step to take in order to apply the NRG method is the mapping of the impurity
model onto a semi-infinite chain for the case of a non-constant Im1(ω + i0+), which we
have already described in [16]. As the resulting Im1(ω + i0+) can develop very narrow
structures at the Fermi level, we need a reliable numerical method to calculate≈60–100
hopping matrix elements of the chain. This is done using arbitrary-precision Fortran routines.
Apart from the difference in the hopping matrix elements, the calculation ofF(z), G(z)
and6U(z) follows the same procedure as in the flat-band case.
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Figure 6. The real part of the self-energy for the Hubbard model (for the same parameters as in
figure 5). The negative slope atω = 0 diverges at the metal–insulator transition. ForU > Uc,
the real part shows a(1/ω)-divergence.
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Figure 7. The imaginary part of the self-energy for the Hubbard model (for the same parameters
as in figure 5). Aδ-function develops forU → Uc.

The simplest model for correlation effects in solids is the well-known Hubbard model
[17]. This model is believed to have a rich phase diagram despite its comparatively simple
form. DMFT studies at finite temperatures indeed revealed for example antiferromagnetic
[18, 13] and ferromagnetic transitions [19, 20] and Mott–Hubbard metal–insulator transitions
[13]. Nevertheless, there still remain lots of interesting open questions, especially about the
properties of the model at extremely low temperatures both at and away from half-filling.

Here we study the Hubbard model atT = 0 for a semi-circular density of statesρ0(ε)
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corresponding to the Bethe lattice with infinite coordination number:

ρ0(ε) = 2

π

√
1− ε2 (17)

(D = 1) at particle–hole symmetry and in the paramagnetic regime. The resulting spectral
functions for the paramagnetic Hubbard model for various values ofU are collected together
in figure 5. With increasingU , the one-particle spectrum develops the typical three-peak
structure with a quasiparticle peak atω = 0 and the two Hubbard bands at±U/2. Above
a certain valueUc ≈ 2.93, the central peak vanishes and the system becomes insulating.

Figures 6 and 7 show the real and imaginary parts of the self-energy for the same
parameters as in figure 5 (U = 1 and U = 4 are not shown). The Hartree term in
the real part (=U/2) is subtracted. The negative slope at the Fermi level diverges as
U → Uc. For U > 2.93 (the insulating solution) the real part shows a(1/ω)-divergence.
The correspondingδ-peak in the imaginary part is not plotted in figure 7. Thisδ-peak in
Im6U(ω) emerges from a two-peak structure in the metallic regime, with the positions of
the two peaks approachingω = 0 for U → Uc. The imaginary part shows the Fermi-liquid
behaviour Im6U(ω) ∝ ω2 at low frequencies forU < Uc.

In order to give the reader an idea of the complex structures arising in lattice models,
we show in figure 8 a comparison of the NRG flow diagram for the energy levels for
the single-impurity Anderson model with flat Im1(ω) (figure 8(a)) and typical results
for the Hubbard model in the paramagnetic metallic phase (figure 8(b)) and paramagnetic
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Figure 8. Flow diagrams for the lowest energy levelsEQ,S as functions of the number of NRG
iterationsN . The solid lines correspond to quantum numbersQ = 0, S = 1/2 and the dashed
lines to quantum numbersQ = 1, S = 0. (a) The flat-band case withεf = −0.2, U = 0.4 and
a constant10 = 0.015. For largeN , the system flows to the Fermi-liquid fixed point, while
in the intermediate regime (N ≈ 20) it is near the so-called local moment fixed point. (b) The
Hubbard model withU = 2 flows to the same Fermi-liquid fixed point as in the flat-band case.
(c) The Hubbard model withU = 4 flows to the local moment fixed point corresponding to the
insulating behaviour. (d) The hopping matrix elementstN of the semi-infinite NRG chain for
(a) (diamonds), (b) (circles) and (c) (crosses), respectively.
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insulating phase (figure 8(c)). In contrast to the single-impurity case, the flow diagrams for
the Hubbard model show a complicated crossover behaviour for high energies (low NRG
iteration number) before they saturate into a fixed-point spectrum for large NRG iteration
numbers, i.e. low energies. While these fixed-point spectra for the impurity model and
the metallic solution of the Hubbard model (figures 8(a) and 8(b)) are identical, i.e. both
correspond to a Fermi liquid, the fixed-point spectrum for the insulator (figure 8(c)) has a
quite different structure (see e.g. the flow of the first excited state withQ = 1, S = 0 in
figure 8(b) and figure 8(c);Q is defined as the particle number with respect to half-filling).
In addition, the behaviour of the hopping matrix elements for the three cases is shown in
figure 8(d) (diamonds, circles and crosses, respectively). Note the oscillatory behaviour in
the latter case characteristic for a system with a (pseudo-) gap.

The data shown here are quite similar to those obtained by Georgeset al [13] in that
for U very close toUc the quasiparticle peak seems to be isolated from the two Hubbard
bands centred atω = ±U/2. However, we always find very small but finite spectral weight
in the region between the quasiparticle peak and the Hubbard bands. At the moment it is
not clear whether this small spectral weight is a real physical effect or an artefact due to the
broadening of the discreteδ-functions from the NRG procedure. This question is currently
being investigated and a more detailed analysis of the metal–insulator transition atT = 0
will be presented in a subsequent publication.

For the time being wedefinethe point where the transition from a metal to an insulator
takes place by the divergence of the effective mass

m∗ = 1− ∂

∂ω
Re6U(ω)

∣∣∣∣
ω=0

(18)

of the quasi-particles. Note that this scenario completely neglects the possibility of a dis-
continuous transition for aU < Uc.

The behaviour of the effective mass as a function ofU is shown in figure 9. m∗

diverges atUc ≈ 2.93 and the critical behaviour close toUc is consistent with a power
law with an exponent of≈−2. Unfortunately, the data currently available do not allow
a precise evaluation of this exponent. The value ofUc is significantly smaller than the
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Figure 9. TheU -dependence of the effective massm∗ for the Hubbard model.m∗ diverges at
Uc ≈ 2.93 which defines the critical value of the metal–insulator transition.
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value Uc,2 ≈ 3.3 found by Georgeset al using the iterative perturbation theory, but in
good agreement with the valueUc,2 = 2.92± 0.05 that they obtained from their self-
consistent projective technique calculations [13]. It also agrees well with the value of
Uc,2 = 3.02± 0.05. obtained in the NRG calculations of Shimizu and Sakai [14].

4. Summary

In this paper we have presented a new method for calculating the self-energy of the single-
impurity Anderson model with the numerical renormalization group method. In contrast to
the standard approach where one calculates the self-energy from the Green’s function alone,
we express6U(z) as a ratio of two correlation functions. The central aspect of this paper
is that this method is much more accurate than the usual method.

The importance of this gain in accuracy goes beyond the mere improvement of the
results for the single-impurity Anderson model. Our method now in addition allows one to
apply the NRG method to various lattice models within the dynamical mean-field theory,
where the self-energy of an effective impurity Anderson model has to be calculated self-
consistently. As examples, we recapitulated typical results for the single-impurity Anderson
model and presented results for the Hubbard model with a semi-circular density of states
(corresponding to the Bethe lattice with infinite coordination number) at particle–hole
symmetry andT = 0. For the latter we find a metal–insulator transition with a critical
Coulomb interactionUc ≈ 2.93 and a diverging effective massm∗ asU ↗ Uc.

A more detailed analysis of the metal–insulator transition, results for the Hubbard
model away from particle–hole symmetry and the investigation of more complicated models
(the periodic Anderson model, the three-band Hubbard model etc) will be discussed in
forthcoming publications.
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Appendix A. The correlation function F (z)

Here we present some details of the calculation ofF(z) and discuss some of its properties.
The NRG method uses a discretized version of the Anderson model in a semi-infinite

chain form (for details see [7, 8]). The resulting spectral functions will therefore be given
as a set of discreteδ-peaks.

The spectral representation ofF(z) is

B(ω) = 1

Z

∑
nm

〈n|f↓f †↑f↑|m〉〈m|f †↓|n〉δ(ω − (Em − En))(e−βEn + e−βEm). (A1)

The matrix elements〈n|f↓f †↑f↑|m〉, 〈m|f †↓|n〉 and the energiesEn,Em are calculated
iteratively in the NRG method. The two operators

V
1/2

1/2 = f↓f †↑f↑ V
1/2
−1/2 = −f↑f †↓f↓ (A2)
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transform as [
s±, V 1/2

q

]
− =

√
3

4
− q(q ± 1) V 1/2

q±1[
sz, V

1/2
q

]
− = qV 1/2

q

(A3)

(q = ±1/2), with the spin operators

s+ = f †↑f↓ s− = f †↓f↑
sz = 1

2
(f
†
↑f↑ − f †↓f↓).

(A4)

This allows us to use the Wigner–Eckart theorem:

〈Q,S, Sz, w|V 1/2
q

∣∣Q′, S ′, S ′z, w′〉 = 〈Q,S,w∣∣∣∣V 1/2
q

∣∣∣∣Q′, S ′, w′〉〈S ′, S ′z, 1
2, q|S, Sz

〉
. (A5)

The 〈Q,S,w||V 1/2
q ||Q′, S ′, w′〉 are reduced matrix elements and the〈S ′, S ′z, 1

2, q|S, Sz〉 are

Clebsch–Gordan coefficients. It is important to note that the operatorsV
1/2
q transform in

exactly the same way as the two operators

W
1/2
1/2 = f †↑ W

1/2
−1/2 = f †↓ . (A6)

This has the consequence that all of the recursion formulae for the reduced matrix elements
of W 1/2

q can be used for the calculation of the reduced matrix elements ofV
1/2
q . The only

changes are in the particle numbersQ of the states involved and the initial values (see
below).

The states|n〉 and |m〉 in equation (A1) are classified in terms of the chargeQ (the
total particle number relative to the half-filled case), the total spinS, the z-component of
the total spinSz and an additional labelw:

|n〉 = |Qn, Sn, Sz,n, wn〉
|m〉 = |Qm, Sm, Sz,m,wm〉.

(A7)

The sum overSz,n andSz,m in equation (A1) can be performed exactly and we find

B(ω) = 1

Z

∑
Q,S,wn

Sm=S±1/2,wm

〈
Q,S,wn

∣∣∣∣V 1/2
1/2

∣∣∣∣Q+ 1, Sm,wm
〉

× 〈Q+ 1, Sm,wm
∣∣∣∣f †↓ ∣∣∣∣Q,S,wn〉δ(ω − (Em − Eg))

× (e−βEn + e−βEm)
1√
2

√
2S + 1

{√
S Sm = S − 1

2

−√S + 1 Sm = S + 1
2.

(A8)

We are only interested in the limit of zero temperature, where we have

B+(ω) = 1

Z

∑
Sm=Sg±1/2

∑
wm

〈
Qg, Sg,wg

∣∣∣∣V 1/2
1/2

∣∣∣∣Qg + 1, Sm,wm
〉

× 〈Qg + 1, Sm,wm
∣∣∣∣f †↓ ∣∣∣∣Qg, Sg,wg

〉
δ(ω − (Em − Eg))

× 1√
2

√
2Sg + 1

{√
Sg Sm = Sg − 1

2

−√Sg + 1 Sm = Sg + 1
2

(A9)
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for positive frequencies and

B−(ω) = 1

Z

∑
Sn=Sg±1/2

∑
wn

〈
Qg − 1, Sn, wn

∣∣∣∣V 1/2
1/2

∣∣∣∣Qg, Sg,wg
〉

× 〈Qg, Sg,wg
∣∣∣∣f †↓ ∣∣∣∣Qg − 1, Sn, wn

〉
δ(ω − (Eg − En))

× 1√
2

√
2Sg + 1

{
−√Sg Sn = Sg − 1

2√
Sg + 1 Sn = Sg + 1

2

(A10)

for negative frequencies. The ground-state is labelled by|g〉 = |Qg, Sg, Sz,g, wg〉, the
ground-state energy isEg and the partition functionZ reduces to the ground-state
degeneracy.

To set up the iterative calculation of the reduced matrix elements〈
Qn, Sn,wn

∣∣∣∣V 1/2
1/2

∣∣∣∣Qm, Sm,wm
〉

we first of all need the initial values for the uncoupled impurity. The only non-zero matrix
element is 〈

0, 1
2

∣∣∣∣V 1/2
1/2

∣∣∣∣1, 0
〉 = −1 (A11)

in contrast to the two initial values〈
0, 1

2

∣∣∣∣f †↓ ∣∣∣∣− 1, 0
〉 = 1〈

1, 0
∣∣∣∣f †↓ ∣∣∣∣0, 1

2

〉 = −√2.
(A12)

Apart from the difference in the initial values and the fact thatQm = Qn + 1 for the
〈 ||V 1/2

1/2 || 〉 matrix elements, the recursion relations for the two reduced matrix elements are
identical and are given by

N

〈
Q,S,w

∣∣∣∣V 1/2
1/2

∣∣∣∣Q′, S ′, w′〉
N

=
∑
rr ′

4∑
pp′=1

UQS(w, rp)UQ′S ′(w
′, r ′p′)

N

〈
Q,S, r;p∣∣∣∣V 1/2

1/2

∣∣∣∣Q′, S ′, r ′;p′〉
N

(A13)

with p, p′ ∈ {1, 2, 3, 4}. The UQ,S are the unitary matrices which diagonalize the
Hamiltonian matrix in the subspace with chargeQ and spinS. The reduced matrix elements
on the right-hand side of equation (A13) are given by

N

〈
Q,S, r; 1∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S ± 1
2, r
′; 1〉

N
=

N−1

〈
Q+ 1, S, r

∣∣∣∣V 1/2
1/2

∣∣∣∣Q+ 2, S ± 1
2, r
′〉
N−1

N

〈
Q,S, r; 2∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S + 1
2, r
′; 2〉

N

= − 2
√
S2+ S

2S + 1 N−1

〈
Q,S − 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S, r ′
〉
N−1

N

〈
Q,S, r; 2∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S − 1
2, r
′; 2〉

N
= −

N−1

〈
Q,S − 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S − 1, r ′
〉
N−1

N

〈
Q,S, r; 3∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S + 1
2, r
′; 3〉

N
= −

N−1

〈
Q,S + 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S + 1, r ′
〉
N−1

N

〈
Q,S, r; 3∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S − 1
2, r
′; 3〉

N

= − 2
√
S2+ S

2S + 1 N−1

〈
Q,S + 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S, r ′
〉
N−1

N

〈
Q,S, r; 2∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S − 1
2, r
′; 3〉

N
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= − 1

2S + 1N−1

〈
Q,S − 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S, r ′
〉
N−1

N

〈
Q,S, r; 3∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S + 1
2, r
′; 2〉

N

= 1

2S + 1N−1

〈
Q,S + 1

2, r
∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S, r ′
〉
N−1

N

〈
Q,S, r; 4∣∣∣∣V 1/2

1/2

∣∣∣∣Q+ 1, S ± 1
2, r
′; 4〉

N
=

N−1

〈
Q− 1, S, r

∣∣∣∣V 1/2
1/2

∣∣∣∣Q,S ± 1
2, r
′〉
N−1.

(A14)

The spectral functionB(ω) obeys the sum rule∫ ∞
−∞

dω B(ω) = 1

Z

∑
n

e−βEn〈n|f †↑f↑|n〉 ≡ 〈f †↑f↑〉 (A15)

which can be easily derived by integrating equation (A1) overω. In the particle–hole-
symmetric case this gives∫ ∞

−∞
dω B(ω) = 1

2
(A16)

where we also find the following relation betweenB(ω) andA(ω):

B(ω)+ B(−ω) = A(ω). (A17)

This can be directly obtained from equation (6).
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